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Abstract

Constants, formulae and other (hopefully!?) useful stuff simulat-
ing the behaviour and performance to be expected from astronomical
instrumentation is collected.

Introduction

Simulating the behaviour and performance of instrumentation is required,
in different forms, at several different times during the development of an
astronomical research project, from preliminary studies of an instrument to
the planning of its observations to the assessment of their quality.
This is a compilation of mostly trivial and boring but (hopefully!?) useful
stuff related to the simulation of astronomical instrumentation behaviour
and performance.
In Section 1 some basic optical concepts are reviewed. Section 2 discusses
energies involved in light propagation, its breaking down in photons and
blackbody emission. In Section 3 reviews some typical representations of
the spectrum of astronomical objects. Sections 4 and 5 discuss sources of
instrumental and sky background, respectively. Section 6 reports a few
formulae which can be used to compute the SNR to be expected from an
observation. In Appendices A and B, the units of measure used for angular
and photometric quantities, the adopted conventions about their abbrevia-
tions, some useful conversion factors and formulae are given. Appendix D
lists further useful astrophysical constants and conversion factors.
Léna et al. (1998), Schlessinger (1995), and Vaccari (2000) are good starting
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points for the adoption of a consistent set of units of measures, names and
symbols.
SI units are generally used throughout the document. Approximate nu-
merical values of constants (generally given with 4 significant figures) and
analytical relations are indicated by the ' symbol, whereas the = symbol is
used to indicate exact (”by definition”) relations and physical constants.

1 Optics

The Aperture D of an optical system is (for radial-symmetry, i.e. circular,
telescopes, which we will limit ourselves to consider) the diameter of its
light-collecting area (i.e. its primary mirror or lens).
The Focal Length f of an optical system is expressed in metres and defines
the image scale on the focal plane, or Focal Scale of the instrument, meaning
that the angular distance ∆α between two directions on the sky is related
to their physical distance ∆ l when they are imaged on the focal plane by

∆α[rad] =
∆ l

f
,

which once ”put in numbers” becomes

∆ l[µm]

∆α[arcsec]
' 4.848 f[m] .

Similarly, the solid angle ∆ Ω spanned on the sky by a given sky region is
related to the physical area ∆A spanned on the focal plane by

∆ Ω[sterad] =
∆A

f2
,

which once ”put in numbers” becomes

∆A[m2]

∆ Ω[deg2]
' 3.046 · 10−4 f2

[m] .

The Focal Ratio (also referred to as f-number, f-ratio, Aperture Ratio and
Relative Aperture and indicated as F or N) is defined as the ratio between
the focal length and the aperture, e.g. by

F = N =
f

D
.

It is often useful, and particularly so for simulation purposes, to describe
the entire optical system of an astronomical instrument by means of a more
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or less simple mathematical function depending on a few parameters. In
this context, it is also customary to describe the optical response of most
”conventional” telescopes by means of some measure of the ”size” of the
instrument’s beam.
A functional form often used for these purposes is the ideal diffraction pat-
tern produced by a circular aperture, or Airy Function, whose exact analyt-
ical expression can be written as

AF (φ) = 4

[
J1(φ)− ε J1(ε φ)

φ (1− ε2)

]2

(1)

where ε is the telescope obstruction ratio (ε = 0 in ideal systems), J1 is the
Bessel J-function of order 1 and φ is the dimensionless parameter related to
the sky angle α by

φ = π
D

λ
α [rad]

For an ideal (ε = 0) system the Airy Function thus reduces to

AF (φ) = 4

(
J1(φ)

φ

)2

(2)

and its Encircled Energy Function to

EEF (φ) = [1− J2
0 (φ)− J2

1 (φ)] (3)

The Airy Function and its Encircled Energy Function for an ideal system
are tabulated in Table 1 for various values of α (here expressed in units of
λ/D).

As mentioned, in practice a few ”fiducial” values are used to characterize the
extension of such an ideal diffraction pattern. An often-used proxy for an
instrument’s beam size is the Airy Disk, i.e. the first zero-brightness circle
of the Airy Function. The angular diameter of the Airy Disk produced by
a circular aperture of linear diameter D is

δAD ' 2.44
λ

D
[rad] or δAD ' 0.503

λ[µm]

D[m]
[arcsec] ,

so that the overall size of the ”beam”, or the solid angle encircled by the
Airy Disk, is

ΩAD ' 4.68

(
λ

D

)2

[sterad] or ΩAD ' 0.199

(
λ[µm]

D[m]

)2

[arcsec2] .
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Table 1: Values of the Airy Function and its Encircled Energy Function as
from Equations 2 and 3.

α [λ/D] AF (α) EEF (α)

0.0 1.000 0.0000
0.1 0.976 0.0244
0.2 0.905 0.0940
0.3 0.797 0.1989
0.4 0.664 0.3248
0.5 0.521 0.4559
0.6 0.381 0.5774
0.7 0.256 0.6785
0.8 0.154 0.7531
0.9 8.03E-2 0.8011
1.0 3.28E-2 0.8264
1.1 8.14E-3 0.8361
1.2 1.77E-4 0.8378
1.3 2.27E-3 0.8382
1.4 8.45E-3 0.8417
1.5 1.42E-2 0.8500

Now the ”full” Airy Disk above is a rather conservative (i.e. pessimistic)
measure of the ”size’”of an instrument’s beam, which is why one often uses
the Airy Disk FWHM (or more precisely the FWHM of the Airy Fucntion)
for this purpose instead, whose value is

δAD,FWHM ' 1.02
λ

D
[rad] or δAD,FWHM ' 0.210

λ[µm]

D[m]
[arcsec] ,

so that the overall size of the ”beam”, or the solid angle encircled by the
Airy Disk FWHM, is

ΩAD,FWHM ' 0.817

(
λ

D

)2

[sterad] or ΩAD,FWHM ' 0.0348

(
λ[µm]

D[m]

)2

[arcsec2] .

The Focal Ratio f/D of an optical system is the ratio between its focal
length and aperture, whereas its reciprocal D/f is called Aperture Ratio.
For an ideal optical system (100 % reflectivity mirrors), the specific power
Pν hitting the whole detector when the system is exposed to a point source
of specific brightness Fν is given by1

1In Equations 4, 5, 6 and 7, a generic area A must be used instead of πD2/4 for
non-circular telescopes.

4



Pν =
πD2

4
Fν [J / s Hz] , (4)

or equivalently, expressed in photons, by

Pν,ph =
πD2

4h

Fν
ν

26
=
πD2

4h

Fλ
λ

[photons / s Hz] . (5)

Similarly, for an ideal optical system the specific power per unit solid angle
hitting the detector when the system is exposed to a diffuse source of specific
surface brightness Σν is given by

Pν,sur =
πD2

4
Σν [J / s sr Hz] , (6)

or equivalently, expressed in photons, by

Pν,ph,sur =
πD2

4h

Σν

ν

27
=
πD2

4h

Σλ

λ
[photons / s sr Hz] . (7)

2 Energy, Photons, Blackbodies etc.

The energy of a photon of frequency ν is given by

E = h ν =
h c

λ
,

where

h ' 6.626 · 10−34 J / s ,

is Planck’s constant and

c ' 2.999 · 108 m / s ,

is the speed of light in a vacuum.
In spectroscopy, the energy of a photon is often expressed by the inverse of
its wavelength, or Wave Number

ν̃ =
1

λ
=
ν

c
,
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which is generally expressed in cm−1. When using an actual energy unit is
appropriate, one generally uses the electronvolt

1 eV = 1.602 · 10−19J ,

i.e. the amount of energy equivalent to that gained by a single unbound
electron when it is accelerated through an electrostatic potential difference
of one volt (in a vacuum). In other words, an electronvolt is equal to one volt
(1 volt = 1 joule per coulomb) multiplied by the (unsigned) charge of a single
electron. The energy of a photon is related to its wavelength by the following

E[eV] =
1.24

λ[µm]
.

Planck’s law describing the radiation from a blackbody says that the fre-
quency specific surface brightness, i.e. the energy emitted per unit time, unit
area (of the emitter’s surface), unit solid angle and unit frequency interval,
of a blackbody at a temperature T is

Bν(ν, T ) =
2h ν3

c2

[
exp

(
hν

kT

)
− 1

]−1

[J / s m2 sr Hz] ,

whereas the corresponding wavelength specific surface brightness, i.e. the
energy emitted per unit time, unit area (of the emitter’s surface), unit solid
angle and unit wavelength interval (which is related to the previous quantity
by Equation 25) is

Bλ(λ, T ) =
ν2

c
Bν(ν, T ) =

2h c2

λ5

[
exp

(
hc

λkT

)
− 1

]−1

[J / s m2 sr m] ,

where

k ' 1.38 · 10−23J /K ,

is Boltzmann’s constant.
The corresponding specific brightness at the receiver, i.e. the energy re-
ceived per unit time, per unit area (of the receiver’s surface) per unit fre-
quency/wavelength interval from the whole blackbody (assuming this has a
spherical shape) is instead

SBν (λ) = π Bν (λ)

(
R

r

)2

,
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where R is the radius of the blackbody, r the distance between the black-
body and the observer, and the π factor arises from integration.
Integration of one of the aforementioned formulae yields the energy emit-
ted per unit time per unit area (of the emitter’s surface) at all frequen-
cies/wavelengths. This turns out to depend on the temperature of the black-
body only, a result also known as Stefan-Boltzmann’s law

Fbb = σ T 4 [J / s m2] ,

where

σ =
2π5

15

k4

c2 h3
' 5.67 · 10−8 J / s m2 K4

is Stefan-Boltzmann’s constant.
The corresponding brightness at the receiver, i.e. the energy received per unit
time, per unit area (of the receiver’s surface) at all frequencies/wavelengths
from the whole blackbody (assuming this has a spherical shape) is instead

B = π Fbb

(
R

r

)2

,

where R is the radius of the blackbody, r the distance between the black-
body and the observer, and the π factor arises from integration.
Similarly, the derivation of the expression given for Bλ yields the relation
between the wavelength of its maximum and the temperature, or Wien’s
displacement law

λmax T ' 2.898 · 10−3 m K .

The Emissivity ε of a body is defined as the ratio

ελ =
Ftrue,λ
Fbb,λ,T

,

between its wavelength specific brightness and the wavelength specific bright-
ness of a blackbody at the same temperature T . The Absorptivity of a body
is similarly defined as the ratio of the energy absorbed by a body and by a
blackbody at the same temperature. Kirchoff’s law states that at thermal
equilibrium, the emissivity of a body equals its absorptivity. In general, the
emissivity of a body is wavelength-dependent, but by definition a blackbody
has got ελ ≡ ε. By extension, a graybody is a body for which ελ ≡ ε, and
thus Ftrue,λ = ε Fbb,λ,T .

7



In order to describe dust emission astronomers often use a modified gray-
body

Sν = K νβ Bν,Td ,

where K is a constant, and β (whose value is between 1 and 2) is called
the dust emissivity index. For such a modified graybody, in other words,
εν = K νβ.

3 Object Spectrum

Sensitivity calculations can be performed with reference to theoretical spec-
tra given in analytical form, to synthetic spectra derived from numerical
simulations and fitted by some mathematical function, or to templates taken
from the literature. Two common analytical forms are the flat spectrum

Fλ ≡ Fλ,0 [J /m m2 s] ,

and the constant reduced brightness spectrum

λ Fλ ≡ F0 [J /m2 s] .

When integrated over a wavelength interval centred on λ0 and of width ∆λ[
λ0 −

∆λ

2
, λ0 +

∆λ

2

]
,

these two spectra yield2

F∆λ = ∆λ Fλ,0 ,

and

F∆λ = ln

(
λ0 + ∆λ/2

λ0 −∆λ/2

)
F0 .

To a first approximation, one can assume that the response of the system
and the spectrum of the source are both flat, so as to integrate a constant
function over a given range. This will preclude the perception of possible de-
tails where the response and the spectrum show some structure such as rapid
increases or decreases, but at the same time will allow simple computations.

2Note, however, that in order to obtain the overall flux usable for scientific studies the
spectrum of the source must be weighted by the transmittance of the optical telescope
asembly (OTA) and by the detector quantum efficiency (DQE).
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4 Instrumental Background

In general, one must then know the geometry, temperature and emissiv-
ity of the different parts of the satellite in order to reliably simulate the
instrumental background!

5 Sky Background

Measurements and units used for sky background (which from a dimensional
point of view is of course a surface brightness) at different wavelengths are
generally rather confusing.
Leinert et al. (1998) collect a lot of information about the different compo-
nents of the sky background over a wide wavelength interval.

6 Signal-to-Noise Ratio Calculation

Under the assumption that an observation (or, equivalently, an exposure) of
an object is made up of a certain number of frames (in order e.g. to reduce
the total number of cosmic rays affecting the individual readouts and not
to fill the potential wells of the detector’ pixels, the conventions used in the
following are as follows:

• t : single-frame exposure time [s]

• nfr : number of frames composing an oservation [pure number]

• T = nfr t : single-observation exposure time [s]

• object area : the angular size of the sky region over which a point
source is spread, either due to diffraction effects or to the source being
physically extended on the sky [solid angle - sr]

• np : number of pixels within the object area

• F : total electron counts during t [ e−]

• S : electron counts from the object during t [ e−]

• bi : electron counts from the instrumental background per pixel during
t [ e−]

• bs : electron counts from the sky background per pixel during t [ e−]

• σf : standard error of generic estimated flux f = F, S, b [ e−]

• r : total readnoise per pixel [ e− rms]
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• SNR : signal-to-noise ratio in the measurement of the source bright-
ness during an observation [pure number]

Under these assumptions, F can be written as

F = S + np b . (8)

The physical process of the emission of photons from an astronomical ob-
ject can be statistically described in terms of a Poisson distribution. The
standard error in the measurement of F is then due to the intrinsic Poisson
noise associated with F and to the readnoise. These two contributions sum
quadratically yielding for the variance of F

σ2
F = F + np r

2 = S + np b+ np r
2 . (9)

Since the signal S from the object is estimated by subtraction from F of the
sky background

S = F − np b , (10)

the variance of S is

σ2
S = σ2

F + (np σb)
2 = S + np b+ np r

2 + (np σb)
2 . (11)

SNR is then

SNR =
√
nobs

S

σS
=

√
nobs S√

S + np b+ np r2 + (np σb)2
, (12)

while σmag is

σmag =
2.5 log e
√
nobs SNR

=
2.5 log e

√
S + np b+ np r2 + (np σb)2

√
nobs S

. (13)

The overall SNR of a number nfr of repeated observations of a given field
is finally given by

SNR(T ) =
√
nfr SNR(t) .

A Angular Quantities

In astronomy, angular quantities are generally expressed in sexagesimal
units. The main units of measure of plane and solid angles are the following:

1 degree = 1 deg ,

1 second of arc = 1 arcsec = 1 as =
1

3600
deg = 103 mas = 106 µas ,

1 radian = 1 rad =
180

π
deg =

648000

π
arcsec ,
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1 square degree = 1 deg2 ,

1 steradian = 1 sterad = 1 sr =
32400

π2
deg2 =

4.2 · 1011

π2
arcsec2 .

The whole sky spans a solid angle

Ωsky = 4π sterad =
129600

π
deg2 = 41253 deg2 =

1.68 · 1012

π
arcsec2 ,

while the sky region where the absolute value of the Galactic (or Ecliptic,
for that matter) latitude b is smaller than a given value φ measures

Ω (|b| < φ) = 4π sinφ [sr] .

B Photometric Quantities

The nomenclature of photometric quantities in use in astronomical literature
is far from standard and sometimes ambiguous. Here we therefore give a
brief summary of the definitions and units of measure of these quantities as
they are used in this study.

• The Luminosity L of a source is the energy radiated by the whole
surface of the source per unit time, that is

L =
dE

dt
[J / s] . (14)

• The Brightness F of a source is the energy radiated by the whole
surface of the source per unit time per unit area (of the receiver), that
is

F =
dL

dA
=

dE

dAdt
[J /m2 s] . (15)

• The Frequency Specific Brightness Fν of a source is the energy radiated
by the whole surface of the source per unit time per unit area (of the
receiver) per unit frequency interval, that is

Fν =
dF

dν
=

dL

dν dA
=

dE

dν dAdt
[J /Hz m2 s] . (16)

In astronomy, Fν is generally expressed in Janskys, where

1 Jansky = 1 Jy = 10−26 J / s m2 Hz = 10−23 erg / s cm2 Hz .

Originally used by radio astronomers and named after one, while a
rather perplexing unit itself (the meaning of the −26 exponent in par-
ticular having being extensively discussed in front of many a pint by
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discouraged early postgraduates), the Jansky is also important in that
it provides the foundation for a magnitude system which, given the
idiosyncracies of most astronomy practitioners, is about as absolute as
it gets, the socalled AB magnitude system. This is defined, at ANY
wavelength, by setting mAB = 0 for a source of Fν = 3631 Jy (fol-
lowing Oke and Gunn 1983, hereafter OG83). This translates into the
following conversions

Fν [Jy] = 3631 · 10−0.4mAB , [OG83]

mAB = −2.5 · log Fν [Jy] + 8.9 , [OG83]

and

Lν [W/Hz] = 4.345 · 1013 · 10−0.4MAB , [OG83]

MAB = −2.5 · log Lν [W/Hz] + 34.095, [OG83]

for apparent and absolute AB magnitudes, respectively. Note, how-
ever, that Tokunaga and Vacca (2005) revised the absolute flux densi-
ties for Vega and thus the zero point of the AB magnitude system so
that

Fν [Jy] = 3720 · 10−0.4mAB , [TV05]

mAB = −2.5 · log Fν [Jy] + 8.926 , [TV05]

and this conversion is now being preferred by a number of projects.

Like in any astronomical magnitude system, magnitude differences are

m1 −m2 = −2.5 · log (f1/f2) ,

which applied to the conversion of magnitude and flux errors yields

merr = −2.5 · log((F − Ferr)/F ) ,

Ferr = F · (1− 10−0.4∗merr) .

Conversely, the suitably-named Vega magnitudes are defined so that
the magnitude of Vega is zero in all bands. Somewhat confusingly,
absolute fluxes of Vega (and secondary calibrators) are measured with
increasing accuracy and thus the very definition of Vega magnitudes
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changes in time. Having said that, estimates for the conversion factor
defined by

mAB = mV ega + conv (17)

are given in Table 2. Clearly, conv is simply the magnitude of the
Vega star in the AB system (in a given band), so that

Fzp [Vega] = Fzp [AB] · 10−0.4 conv ,

or equivalently

conv = 2.5 log(Fzp [AB]/Fzp [V ega]) ,

where
where Fzp [AB] = 3631 Jy .

The closely related Wavelength Specific Brightness Fλ of a source is
the energy radiated by the whole surface of the source per unit time
per unit area (of the receiver) per unit wavelength interval, that is

Fλ =
dF

dλ
=

dL

dλ dA
=

dE

dλdAdt
[J /m m2 s] . (18)

• The Frequency Specific Reduced Brightness Fν,red of a source is the
product of its Frequency Specific Brightness and the frequency at
which it is measured, namely

Fν,red = ν Fν [J /m2 s] , (19)

whereas the Wavelength Specific Reduced Brightness Fλ,red of a source
is the product of its Wavelength Specific Brightness and the wavelength
at which it is measured, namely

Fλ,red = λ Fλ [J /m2 s] . (20)

The fact that these two quantities are expressed in the same units is
not a coincidence but is due to their actually being the same quantity

ν Fν = Fν,red = Fλ,red = λ Fλ , (21)

expressing the source brightness contained in a given (logarithmic)
spectral range. In other words, if we plot Fν,red = Fλ,red using a loga-
rithmic scale along the abscissae, the brightness emitted over different
wavelength ranges can be directly compared by comparing the areas
under the relevant regions of the curve, making it a powerful tool in
graphically illustrating the emission processes of astronomical sources.
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Table 2: AB vs Vega Magnitudes. Band, conv = mAB −mV ega, Vega zero-
points (or zero-Vega-magnitude fluxes in Jy) and source.

band conv Fzp source

GALEX FUV 2.223 468.6 Bianchi 2011
GALEX NUV 1.699 759.3 Bianchi 2011

SDSS u 0.927 1545 Hewett et al. 2006
SDSS g -0.103 3991 Hewett et al. 2006
SDSS r 0.146 3174 Hewett et al. 2006
SDSS i 0.366 2593 Hewett et al. 2006
SDSS z 0.533 2222 Hewett et al. 2006

2MASS J 0.89 1594 2MASS Expl. Supp. 2006
2MASS H 1.37 1024 2MASS Expl. Supp. 2006
2MASS Ks 1.84 666.7 2MASS Expl. Supp. 2006

UKIRT/WFCAM Z 0.528 2232 Hewett et al. 2006
UKIRT/WFCAM Y 0.634 2026 Hewett et al. 2006
UKIRT/WFCAM J 0.938 1530 Hewett et al. 2006
UKIRT/WFCAM H 1.379 1019 Hewett et al. 2006
UKIRT/WFCAM K 1.900 631 Hewett et al. 2006
VISTA/VIRCAM Z 0.502 2287 Gonzalez-Fernandez et al. 2017
VISTA/VIRCAM Y 0.600 2089 Gonzalez-Fernandez et al. 2017
VISTA/VIRCAM J 0.916 1562 Gonzalez-Fernandez et al. 2017
VISTA/VIRCAM H 1.366 1032 Gonzalez-Fernandez et al. 2017
VISTA/VIRCAM Ks 1.827 675 Gonzalez-Fernandez et al. 2017

IRAC-1 2.78 280.9 IRAC Data HandBook 3.0 2006
IRAC-2 3.26 179.7 IRAC Data HandBook 3.0 2006
IRAC-3 3.75 115.0 IRAC Data HandBook 3.0 2006
IRAC-4 4.38 64.1 IRAC Data HandBook 3.0 2006
WISE-1 2.683 306.682 AllWISE Expl. Supp. 2013
WISE-2 3.319 170.663 AllWISE Expl. Supp. 2013
WISE-3 5.242 29.045 AllWISE Expl. Supp. 2013
WISE-4 6.604 8.284 AllWISE Expl. Supp. 2013
MIPS-24 6.77 7.14 MIPS Data HandBook 3.3.1 2008
MIPS-70 9.18 0.775 MIPS Data HandBook 3.3.1 2008
MIPS-160 10.90 0.159 MIPS Data HandBook 3.3.1 2008
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Table 3: AB vs Vega Magnitudes in Johnson-Counsins-Glass System.
Band, Effective Wavelength and Width in nm, conv factors defined in
Equation 17 and Vega zero-points (or zero-magnitude fluxes, in Jy). From
http://www.euro-vo.org/internal/Avo/WorkPackageTwoTwo/mag_to_

flux_conversions and to be taken with a bit of skepticism.

band λeff ∆λ conv Fzp
U 367 66 0.767933 1790
B 436 94 -0.122051 4063
V 545 85 -0.001494 3636
R 638 160 0.184344 3064
I 797 149 0.442323 2416
J 1220 213 0.897256 1589
H 1630 307 1.37857 1020
K 2190 390 1.88462 640
L 3450 472 2.76295 285
M 4750 460 3.43126 154

• Most galaxies, unlike most stars, are resolved objects, so that in addi-
tion to measuring their total energy flux, we can in principle measure
the energy flux per unit solid angle of the source coming from different
regions. The Surface Brightness Σ of a region of a diffuse source is
the energy radiated by the region per unit time, per unit area (of the
receiver) and per unit solid angle (of the source), that is

Σ =
dF

dΩ
=

dL

dΩ dA
=

dE

dΩ dAdt
[J / sr m2 s] . (22)

• The Frequency Specific Surface Brightness Σν of a region of a diffuse
source is the energy radiated by the region per unit time, per unit area
(of the receiver) per unit solid angle (of the source) per unit frequency
interval, that is

Σν =
dF

dν dΩ
=

dL

dν dΩ dA
=

dE

dν dΩ dAdt
[J /Hz sr m2 s] . (23)

The closely related Wavelength Specific Surface Brightness Σλ of a
region of a diffuse source is the energy radiated by the region per unit
time, per unit area (of the receiver) per unit solid angle (of the source)
per unit wavelength interval, that is

Σλ =
dF

dλ dΩ
=

dL

dλ dΩ dA
=

dE

dλ dΩ dAdt
[J /m sr m2 s] . (24)

• When Luminosities rather than Brightnesses are being measured, Lν
and Lλ are defined rather than Fν and Fλ.
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Note that since

dν = d
( c
λ

)
=

c

λ2
dλ ⇐⇒ dν

ν
=

dλ

λ
, (25)

the following relations hold

Fν =
λ2

c
Fλ ⇐⇒ Fν ν = Fλ λ , (26)

Σν =
λ2

c
Σλ ⇐⇒ Σν ν = Σλ λ . (27)

Astronomers, however, generally express brightness and surface brightness
in logarithmic units, i.e. in magnitudes (mag) and magnitudes per square
second of arc (mag/arcsec2), respectively. To define a magnitude scale, one
has to arbitrarily choose a reference brightness Fzp, and the correspond-
ing reference surface brightness Σzp of Fzp per square second of arc. The
brightness of a source expressed in magnitudes is then

m = −2.5 log
F

Fzp
[mag] , (28)

while the surface brightness of a region of a diffuse source in magnitudes per
square second of arc is

µ = −2.5 log
Σ

Σzp
[mag/arcsec2] . (29)

Fzp is called the zero-point of the adopted magnitude scale since m = 0 for
F = Fzp (and thus µ = 0 for Σ = Σzp).
Note that these definitions equally apply to bolometric measurements and
to measurements in a given photometric band. One then simply has to take
into account only the radiation within a given wavelength range weighted
by the profile of the photometric band.
Note also that the sky background is often expressed in different units, such
as those described by Leinert et al. (1998).

C Numerical Constants

π ' 3.141... e = 2.718... γ ' 0.577...

log e ' 0.434... ln 10 ' 2.302...

log e ln 10 = 1

See also Table 4.
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log(01) 0.000000 dex(0.1) 1.25893
log(02) 0.301030 dex(0.2) 1.58489
log(03) 0.477121 dex(0.3) 1.99526
log(04) 0.602060 dex(0.4) 2.51189
log(05) 0.698970 dex(0.5) 3.16228
log(06) 0.778151 dex(0.6) 3.98107
log(07) 0.845098 dex(0.7) 5.01187
log(08) 0.903090 dex(0.8) 6.30957
log(09) 0.954243 dex(0.9) 7.94328
log(10) 1.000000 dex(1.0) 10.0000

Table 4: Some useful numerical constants

D Miscellaneous ”Numbers”

Two units which are often used to express surface brightness and sky back-
ground measurements are related by

1 MJy/sr =
π2

0.419904
µJy/arcsec2 ' 23.5 µJy/arcsec2 . (30)

Given the privileged role of the Sun in shaping our view of the Universe, the
Solar Luminosity, Mass and Radius, are often used to express the luminosi-
ties, masses and radii of stars and/or galaxies. Currently accepted values
are

L� = 3.8478 · 1026 J/s = 3.8478 · 1033 erg/s (31)

M� = 1.9891 · 1030 kg = 1.9891 · 1033 g (32)

R� = 6.960 · 108 m = 6.960 · 1010 cm (33)

In astronomy, distances within the Solar System are generally expressed in

1 Astronomical Unit = 1 A.U. = 1.4960 1011 m ,

while distances outside the Solar System are generally expressed in

1 Parsec = 1 pc = 3.0857 1016 m .
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